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Abstraet--A hydrodynamic computer model for describing multiparticle fluidization has been developed. 
Each group of particles, identical in density and in diameter, is treated as a particulate phase in this model. 
The computer code solves the mass and momentum balance equations for the fluidizing fluid and for the 
required number of particulate phases. The model has been used to simulate granular layer inversion in 
a liquid fluidized bed. This phenomenon occurs during the fluidization of a binary mixture of particles 
in which the denser particles are smaller. In such a system at low fluid velocities, the larger particles 
segregate into a top layer; at higher fluid velocities, they sink to form a bottom layer. At intermediate 
fluid velocities, the extent to which the particles mix is determined by the fluid velocity. The simulation 
results using the multiparticle code are in good agreement with experimental data on granular layer 
inversion. It is also shown that under some conditions, a radial segregation pattern exists in addition to 
the experimentally observed axial segregation pattern. 
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I N T R O D U C T I O N  

Most of the hydrodynamic models for fluidization treat the gas and particulates as two 
interpenetrating fluids (e.g. Gidaspow & Ettehadieh 1983). In its simplest formulation, all the solid 
particles are considered to be identical, characterized by a mean diameter and density. This, 
however, does not permit the simulation of  some very important fluidization phenomena such as 
segregation and elutriation, which are caused by differences in particle sizes or densities. To 
simulate these phenomena, the hydrodynamic theory must be extended to accommodate at least 
two types of  particles, differing in diameter, density, or both. This led Syamlal (1985) to develop 
a multiparticle computer code that can be used to describe the fluidization of  several different types 
of particles. Although the development of  even a single-particle computer code is far from 
complete, it is believed that numerical explorations using the multiparticle code will aid further 
understanding of the hydrodynamics of  fluidization. 

Here we use the multiparticle numerical model to study the "inversion" phenomenon in liquid 
fluidized beds. This phenomenon occurs during the fluidization of  a mixture of  two types of 
particles, of  different densities and diameters, with the denser particles of smaller diameter. In such 
a system, at low fluid velocities, the larger (and less dense) particles segregate at the top of  the bed 
while, at high fluid velocities, they settle to form a segregated layer at the bottom of  the bed. At 
intermediate fluid velocities the particles mix completely. Of course, the exact conditions of  mixing 
and segregation depends upon the size and density ratios. 

In recent years, several theoretical and experimental studies have been conducted to elucidate 
the inversion phenomenon (Van Duijn & Rietema 1982; Moritomi et al. 1982, 1986; Epstein & Le 
Clair 1985; Gibilaro et al. 1986). It has been explained, typically, in terms of the bulk densities of 
the single-component beds: Pbk = El Pl-{-EkPk where E l and p~ are the volume fraction and density 
of the fluid and Ek and Dk are the volume fraction and density of  the kth granular phase. As the 
fluid velocity is increased, the bed expands and, consequently, the bulk density decreases to an 
extent determined by the diameter and density of the bed material. If  a mixture of  two types of 
particles whose individual bulk density vs fluid velocity curves intersect are fluidized, inversion may 
occur; the inversion velocity is predicted to be the fluid velocity at which the bulk densities are 
equal. This simple explanation for inversion phenomenon implies a unique inversion velocity for 
a given fluid-solids system. Experiments, however, show a more complicated behavior; the 
inversion velocity is dependent upon the overall bed composition (Moritomi et al. 1982). Gibilaro 
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et al. (1986) offered an explanation for this by noting that the bottom layer is a mixture of both 
of the particles. They argued that, at a given velocity, the composition of the bottom layer will 
adjust so as to maximize its bulk density. Thus, they were able to quantitatively relate the inversion 
velocity to the overall bed composition. 

THE GOVERNING EQUATIONS 

We consider a fluidized system consisting of a binary mixture of particles. The solid particles 
are of different densities and diameters. Following a suggestion made by Soo (1967), we will 
consider that particles of identical densities and diameters form a distinct continuum--a particulate 
phase. Greenspan & Ungarish (1982) have used a similar approach for modeling the settling of 
a mixture particles of different sizes. Thus, we treat the mixture of two types of particles that differ 
in diameter and density as two distinct, yet interpenetrating, particulate phases. These particulate 
phases are each characterized by a mean diameter (dk) and density (Pk). The particle diameters and 
the particle and the fluid densities are taken to be constants. Note that in all the equations the 
subscript " k "  (=  1, 2 or 3) is used to discriminate between phases; the subscript "k = 1" is reserved 
for the fluid phase. 

Although on a particle-size scale, the particles and the fluid do not coexist at a spatial location, 
the three phases (two particulate and One liquid) can be considered to be interpenetrating continua. 
The fractions of the volume occupied by each of the phases are denoted by E~ and are defined over 
a volume much larger than max F d 3 ] but much smaller than the volume of a computational region. 
Since the fluid and the two particulates form a saturated mixture, 

3 

Z ~ = 1. Ill 
k=l  

Now, the equations of motion can be written for each of the phases with the modified densities 
EkPk. Since interphase mass transfer does not occur between the phases, the continuity equations 
are very similar to the single-phase continuity equation and are written as 

g 
St (EkPk) + V'(•kPkVk) = 0, [2] 

where V k is the velocity of the kth phase. The momentum equations are also similar to the inviscid 
single-phase momentum equations, except for the added interphase momentum transfer terms. The 
fluid-phase momentum equation is written as 

3 
6~t ( E I P l V I )  + V ' ( E I p I V I V , )  = - E  l VP + ElPlg + ~ Flj(Vj-  V l )  [3] 

j=2 

and the particulate-phase momentum equations are written as 

0 3 
St (EkpkV~) + V'(ekPkVkVk)  = - E k V P  + EkPkg + ~, Fkj(Vj - V~) - EkVPs; [4] 

j = l  

P is the fluid pressure, Ps is a solids pressure and Fkj are the interphase momentum transfer terms. 
The fluid-particle momentum transfer (drag) terms, are written as 

FIk = F,I - 3 C EkPIE1 I - ~  ok dk ,VI-Vk] .  [5] 

Syamlai & O'Brien (1988), have shown that the drag coefficient, Cm, can be related to Cos, the 
drag coefficient for an isolated sphere, as 

f R e k ~  

CDk(Rek ,  El ) _ _  CDs~--'~r ) [6] 
V~ ' 

where the function Vr is the ratio of the terminal velocity of a group of particles to that of an 
isolated particle. Among the several empirical correlations available for Vr, only the following one, 
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given by Garside & AI-Dibouni (1977), can be written as an explicit function of Re k and El: 

Vr = 0.5 {A - 0.06 Rek + x/[0.0036 Re~ + 0.12 Rek(2B - A ) + A 2]}, 

where 

and 

[7] 

,4 = c 4~' [8] 

f0.8El'~8, El ~< 0 .85 ,  
B = 4(E~ 65, c, > 0.85. [9] 

For Cos, the drag coefficient of an isolated sphere, we have chosen a simple representation 
developed by Dalla Valle (1948), 

4.8 "~2 
CDs(Rek) = 0.63 + ~ ) .  [10] 

The particle Reynolds number, Rek, is defined as 

dklVl -- VklPl 
Re k = , [11] 

/al 

where I V~-  Vkl is the magnitude of the local relative velocity and #l is the fluid viscosity. 
The formulation of the drag term, F~k, is dictated by the following consideration, which we call 

the additivity condition. Suppose that we have a fluidized bed of identical particles. While using 
a multiparticle model, we have a choice of describing the particles as a single particulate phase of 
volume fraction E2 or as several particulate phases whose volume fractions add up to E2. In the first 
case, we get a single-particulate momentum equation and, in the latter case, several momentum 
equations. Clearly, these particulate momentum equations should correctly add up to the single 
momentum equation of the former case. To ensure this additivity condition, we have made the 
multiparticle drag terms linear functions of E~ (k # 1). 

A particle-particle friction term must be included in the equations to account for the momentum 
exchange between the particulate phases. Arastoopour et al. (1980), observed that such a term is 
necessary to show the correct segregation between particles of different sizes in a pneumatic 
conveyor. An equation for such an interaction in a dilute mixture has been suggested by Soo (1967). 
A similar expression was also used by Nakamura & Capes (1976). An approximate extension for 
the momentum transfer between the kth and j th  particulate phases in a dense bed, 

+ e)EkpkEjpj(d~ + dj) 2 1 + 3 ~ 1/3 

Fkj= 2(d3p~ + d } p j ) 2 1 3 ( ~ ) , / 3 _  l] [Vkjl, [12] 

was derived by Syamlal (1985). The maximum solids volume fraction of a random closely packed 
structure, Ekj, may be calculated as a function of the diameters, ark and 4, and the composition using 
the following empirical formula devised by Fedors & Landel (1979): 

t[(~k - '~j) + (1 - a)(1 - ~k)~j] ~---j,4'klXk for Xk <~ 
+ 

E~j = 'p~ + ~j [ ~  + (1 - ¢,~)~,j] [13] 

I ( 1 - a ) [ ¢ ' ~ + ( 1 - ~ ) ~ , A ( 1 - X ~ ) + ~  for X~>~.--~-~--, 
L [~k + (1 - ~k)c' j ]  

where 

a = ~ d  ~ (dk > 4), [141 
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~k is the particulate volume fraction of the kth single-particle system at maximum packing and 

,e~k__ Ek (Ek + Ej)" [l 51 

[Vkjp is the magnitude of the interphase relative velocity. Note that [12] does not strictly satisfy the 
requirements of the additivity condition. We also note that the particle-particle friction term will 
have only a small influence on the equilibrium distributions, which we intend to calculate here. 

To describe the solids stresses, a solids pressure term, P~, is included in the momentum equation 
[4]. Gidaspow & Ettehadieh (1983) have noted that such a solids pressure term is necessary in the 
equations to make the characteristics real and thereby to get a well posed initial value problem. 
In the absence of a solids pressure term, they found that unrealistically small void fractions were 
occasionally computed. Gidaspow & Ettehadieh (1983) assumed that the solids pressure is an 
exponential function of the void fraction, E,. This assumption was extended to multiparticle systems 
by Syamlal (1985) as, 

VP~ = ekG(e,)Vel, [16] 

where G is given by 

G(E1 ) = 1.5.10 -3 exp[500(0.4 -- E1 )]. [17] 

This expedient does not always prohibit the calculation of unrealistically low void fractions, 
especially in the simulations of multiparticle systems. We therefore imposed an incompressibility 
constraint that El /> e*, the minimum possible void fraction. When this constraint is about to be 
violated in the computations, the void fraction is held constant at the value of e* and Ps is 
computed as an independent variable such that it takes the minimum value required to maintain 
the constraint. Thus Ps takes the place of E~ as an unknown variable. Physically, P~, the solids 
pressure term, represents the reaction forces that maintain the incompressibility constraint and is 
analogous to the pressure in incompressible fluids. 

A multiparticle code based on the above set of equations has been developed to describe the flow 
of solid particles of different types and of a fluid. A finite difference technique is used to solve the 
equations for time-dependent flow in axisymmetric cylindrical coordinates. The continuity 
equations and the momentum equations, with the exception of the momentum convection terms, 
are differenced fully implicitly. The resulting nonlinear algebraic equations are solved iteratively 
to obtain the distribution of the velocities, pressure and volume fractions in the fluidized bed. The 
numerical method is an extension of Harlow & Amsden's (1975) method which was subsequently 
used in the K-FIX code (Rivard & Torrey 1977). Gidaspow & Ettehadieh (1983) used the 
K-FIX code to develop a fluidization model and the multiparticle code evolved from that model. 
The details of the numerical technique may be found in Syamlal (1985) and in the K-FIX 
documentation (Rivard & Torrey 1977). 

SIMULATION RESULTS 

The experimental conditions of Moritomi et al. (1982), were chosen for the computer simu- 
lations. These are summarized in table 1. The bed geometry was represented in two dimensions 
by axisymmetric cylindrical coordinates. Most of the binary mixture simulations were initiated 
assuming a uniformly mixed bed. Some trial simulations, in which initial segregation was assumed, 
yielded identical results. The side walls were taken to be impermeable; i.e. the velocities normal 
to the side walls were set to zero. A constant pressure outflow condition was prescribed at the top 
boundary and a constant mass flow rate of the fluid was prescribed at the bottom boundary of 
the computational region. To obtain the solids distributions at different velocities, the superficial 
fluid velocity (prescribed at the bottom boundary) was varied from 2.5 to 11.5 mm/s roughly in 
increments of 1 mm/s. After each increase in the fluid velocity, 20 s of real time was simulated to 
achieve steady-state conditions; for the first step (i.e. at a fluid velocity of 2.5 mm/s), 40 s of real 
time was simulated. 

First of all, the expansion characteristics of beds containing only glass beads and only hollow 
char were simulated. As the superficial fluid velocity was increased, these single component beds 
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Table 1. Computer simulation conditions 

Particles 
Glass beads 
Hollow char 

Fluid (water) 
Bed composition 

Glass beads 
Hollow char 

Superficial fluid velocities 
Bed dimensions 

Dia 
Height 

Discretization parameters 
Cell sizes 
Time step 

0.775 
Pl = I g/cm3; 

1.50 
Pt = 0.01 g/era s 

100g 
10, 50 or 70g 
2.5-11.5 mm/s 

5 . 0 c m  

30.0 cm 

Radial = 0.5 cm; axial = I cm 
0.01 s 

were found to expand uniformly. The computed average bulk densities of the beds 
(Pbk = P~ E1 + PkCk) are compared with the experimental data of Moritomi et  al. (1982) in figure 1. 
The computed bulk densities of fluidized beds of  glass beads agree reasonably well with 
experimental data at large fluid velocities. At low fluid velocities, the predicted bed expansion is 
greater than what is experimentally observed. The computed bulk densities of  fluidized beds of  
hollow char agree very well with the experimental data over the full range of  velocities. The 
simulation points, in this case, do not fall on a smooth curve because of  the coarseness of  the 
numerical grid; the same is true in the case of some of  the other plots also, which will be presented 
later in this paper. Note that the curves in figure 1 intersect at a fluid velocity of  7.5 mm/s and, 
hence, we may expect granular layer inversion to occur at this velocity. At low fluid velocities, the 
glass beads will form the bottom layer because of  their larger bulk density, whereas, at high fluid 
velocities, they will form the top layer. 

Particle mixture simulations were carried out for three overall bed compositions given in table 
1. Typical simulation results for the mixture of  100 g glass beads and 50 g hollow char are shown 
in figure 2. The layer of glass beads expands monotonically with increasing fluid velocity. At a fluid 
velocity of  10 mm/s, it can be seen to be clearly segregated at the top of  the bed. The hollow char 
layer initially expands with increasing fluid velocity. But at a velocity slightly larger than the 
inversion velocity, it abruptly contracts to form a dense, segregated layer. This is typical of  the 
inversion phenomena. 

Experimental data gathered by Moritomi et  al. (1982), are available only for the heights of  the 
interfaces, obtained through visual observation of  the fluidized bed. Figure 3 shows the comparison 
of experimental data with simulation results, again for the mixture of  glass beads (100 g) and hollow 
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Figure l. Bulk densities of fluidized beds of glass beads in water and hollow char in water. 



478 M. S Y A M L A L  a n d  T.  J. O ' B R I E N  

7 3 0  

? 

~ 2 5  

c e  

e~ 

~ 0  
o 
m 

~ 5 
,-o 

~ 0 

I 1 I 

_--. ____.___~LUID VELOCITY (10-am/s) 

1 0 . 0  

5.0 

2.5 

r I r I , 
0 . 1 0  0 . 2 0  0,30 

VOLUME FRACTION OF GLASS BEADS 

(A) 

A. Glass Beads 

0 . 4 0  

3 0  

? 
CD 

~ 2 5  

e~ 
0 

~ 2o 
r. 

~" 1 0  
o 

~ 5 

"~ 0 

I I 

B .  H o l l o w  C h a r  

7 . V E L O C I T Y  ( l O - 3 m / s )  

. 0  2 . 5  

0 . 1 0  0 . 2 0  0 . 3 0  0 . 4  

VOLUME FRACTION OF HOLLOW CHAR 

(B) 
Figure 2. The volume fraction distribution of glass beads (A) and hollow char (B) close to the wall at 

various fluid velocities. 

char (50 g). The simulated interface locations of hollow char and of glass beads were determined 
from plots similar to those in figure 2. The predicted expansion of the glass beads layer is greater 
than the experimentally observed value. Because of this over-expansion, the glass beads mix more 
evenly with the hollow char, and no sharp segregation pattern is observed at low fluid velocities. 
The expansion and the subsequent contraction of the hollow char layer, however, shows that the 
predicted inversion velocity is about 7 mm/s. This value is very close to the experimental data. 
Figure 4 shows the comparison of experimental data with simulation results for the mixture of 100 g 
of glass beads and 70 g of hollow char. The predicted inversion velocity is about 8 mm/s. The 
experimentally observed increase in the inversion velocity with the increased proportion of hollow 
char, appears to be discernible in the computational results. However, in view of the limited number 
of computations, this is not a conclusive demonstration. Simulations for the mixture of 100 g glass 
beads and 10 g hollow char showed that the particles remained well-mixed at all fluid velocities. 
Because of the very small amount of hollow char used in this case, probably the computer code 
was not able to resolve the hollow char layer. 

So far, we have examined only the macroscopic behavior of the binary fluidized bed system. But 
the hydrodynamic model gives more details about the flow conditions in the bed and, as we will 
shortly see, the model predicts some interesting characteristics of binary fluidization such as 
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FLUID GLASS BEADS HOLLOW CHAR 

Figure 5. The streamlines at a fluid velocity of  2.5 mm/s.  

FLUID GLASS BEADS HOLLOW CHAR 

Figure 6. The streamlines at a fluid velocity of  8 mm/s.  

circulation cells and radial segregation patterns. The flow patterns in the bed were studied by 
plotting streamlines using the NCAR Graphics Software (Henderson & Clare 1979). In the 
following figures the streamlines are shown on the right half of a vertical slice of the bed with an 
exaggerated radial dimension. Figure 5 shows the streamlines of the three phases at a fluid velocity 
of 2.5 mm/s for the system of 50 g hollow char and 100 g glass beads. The fluid and the particulate 
phases are seen to be descending at the center and ascending near the walls. Such a circulatory 
flow pattern was persistent over 10 s of simulation time. Surprisingly, the fluid flow direction 
changes very rapidly as the fluid enters or leaves the bed. The fluid flow above the bed is rectilinear 
and is unaffected by the circulation cell within the bed. Figure 6 shows the streamlines at a fluid 
velocity of 8 mm/s, which is close to the inversion velocity. The bed has expanded, but the features 
of the flow are similar to the previous case. Figure 7 shows the streamlines at a fluid velocity of 
11.5 mm/s. The hollow char has settled to a small layer at the bottom; above that layer, however, 
there is a mixture layer containing a small amount of hollow char. The glass beads layer has 
expanded a great deal and contains two major circulation cells: one in the mixture layer and another 
in a layer of glass only (located above the mixture layer). The fluid has a circulation cell only in 
the mixture layer; in the layers containing only one component the fluid flow is rectilinear. 

The simulations also show that the granular phases may segregate radially when the fluid velocity 
is close to the inversion velocity. Figure 8 shows the volume fraction contour plots on the right 
half of a vertical slice of the bed (with an exaggerated radial dimension) for glass beads and hollow 
char at a fluid velocity of 2.5 mm/s for the system of 50 g hollow char and 100 g glass beads. It 
can be seen that both the phases are nearly uniformly distributed; the hollow char, however, has 
a slightly larger concentration in the region close to the side wall and the bed surface. Figure 9 

FLUID GLASS BEADS HOLLOW CHAR 

Figure 7. The streamlines at a fluid velocity of  I 1.5 mm/s. 

GLASS HOLLOW 
BEADS CHAR 

Figure 8. The solids volume fraction contour  plots at a 
fluid velocity of  2.5 mm/s.  
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Figure 9. The solids volume fraction contour plots at a 
fluid velocity of 8 mm/s. 
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Figure 10. The solids volume fraction contour plots at 
a fluid velocity of 11.5 mm/s. 

shows the volume fraction contour plots at a fluid velocity of 8 mm/s, which is close to the inversion 
velocity. In this case we can see a marked radial segregation of the solids. The hollow char particles 
are seen to be segregating in a region on the right-hand side of the plot, i.e. in an annular region 
close to the side wall. The glass beads form the central core as well as a top layer free of hollow 
char. In all observations through the side wall, however, this will look like a well-mixed bottom 
layer and a segregated top layer of glass beads. Figure 10 shows the volume fraction contour plots 
at a fluid velocity of 11.5 mm/s. The glass beads form a uniform top layer of the volume fraction 
at about 0.09 and the hollow char forms a dense bottom layer of the volume fraction at about 
0.4. Moritomi et al. (1982), did not report any variation in the solids distribution in the radial 
direction. In theoretical studies, it is usually assumed that the solids are distributed uniformly in 
the radial direction (e.g. Gibilaro et al. 1986). But the simulation results show that mai'ked radial 
segregation of the particulate phases is possible at a fluid velocity close to the inversion velocity. 
A plausible explanation for this is as follows. We saw earlier that at the point of inversion the two 
single-component beds have identical bulk densities. This suggests that at the point of inversion 
the phases may exist in any state of mixing--the radially segregated state being one of them. The 
steady-state solution given by the computer simulation is such a radially segregated state. At 
present there are no experimental data available to verify this prediction. 

CONCLUSIONS 

We have presented a first attempt to study segregation in a liquid fluidized bed using a 
multiparticle numerical model. Semiquantitative agreement with some limited experimental data 
has been obtained without using any adjustable parameters. The predicted inversion velocities of 
7.0 and 8.0 mm/s are close to the experimental values of 7.0 and 9.7 mm/s. A small variation in 
the inversion velocity with respect to the overall bed composition could be discerned. However, 
in view of the limited number of computations, this is not a conclusive demonstration. The 
simulation results also give a detailed picture of the solids distribution in the bed that shows radial 
segregation patterns. No experimental data are available to verify these predictions. 

These results increase confidence in the treatment of the gas-solid drag terms and buoyancy 
effects used in the model. However, further development of these constitutive laws will be required 
to refine the agreement with experimental data. The model should also be used to study segregation 
in gas fluidized beds for further verification. 
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